Gut microbiota, gut microbiome, or gut flora are the , including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of . The gastrointestinal metagenome is the aggregate of all the of the gut microbiota.
The microbial composition of the gut microbiota varies across regions of the digestive tract. The colon contains the highest microbial density of any human-associated microbial community studied so far, representing between 300 and 1000 different species. Bacteria are the largest and to date, best studied component and 99% of gut bacteria come from about 30 or 40 species. About 55% of the dry mass of feces is bacteria. Over 99% of the bacteria in the gut are , but in the cecum, aerobic bacteria reach high densities. It is estimated that the human gut microbiota has around a hundred times as many as there are in the human genome.
The relationship between some gut microbiota and humans is not merely commensalism (a non-harmful coexistence), but rather a mutualistic relationship. Some human gut microorganisms benefit the host by fermentation dietary fiber into short-chain fatty acids (SCFAs), such as acetic acid and butyric acid, which are then absorbed by the host. Intestinal bacteria also play a role in synthesizing certain B vitamins and vitamin K as well as metabolizing , , and .
The composition of human gut microbiota changes over time, when the diet changes, and as overall health changes. A systematic review from 2016 examined the preclinical and small human trials that have been conducted with certain commercially available strains of probiotic bacteria and identified those that had the most potential to be useful for certain central nervous system disorders. It should also be highlighted that the Mediterranean diet, rich in vegetables and fibers, stimulates the activity and growth of beneficial bacteria for the brain.
Many species in the gut have not been studied outside of their hosts because they cannot be cultured. While there are a small number of core microbial species shared by most individuals, populations of microbes can vary widely. Within an individual, their microbial populations stay fairly constant over time, with some alterations occurring due to changes in lifestyle, diet and age. The Human Microbiome Project has set out to better describe the microbiota of the human gut and other body locations.
The four dominant bacterial phyla in the human gut are Bacillota (Firmicutes), Bacteroidota, Actinomycetota, and Pseudomonadota. Most bacteria belong to the genera Bacteroides, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, and Bifidobacterium. Other genera, such as Escherichia and Lactobacillus, are present to a lesser extent. Species from the genus Bacteroides alone constitute about 30% of all bacteria in the gut, suggesting that this genus is especially important in the functioning of the host.
Fungal genera that have been detected in the gut include Candida, Saccharomyces, Aspergillus, Penicillium, Rhodotorula, Trametes, Pleospora, Sclerotinia, Bullera, and Galactomyces, among others. Rhodotorula is most frequently found in individuals with inflammatory bowel disease while Candida is most frequently found in individuals with hepatitis B cirrhosis and chronic hepatitis B.
Archaea constitute another large class of gut flora which are important in the metabolism of the bacterial products of fermentation.
Industrialization is associated with changes in the microbiota and the reduction of diversity could drive certain species to extinction; in 2018, researchers proposed a biobank repository of human microbiota.
The small intestine contains a trace amount of microorganisms due to the proximity and influence of the stomach. Gram-positive coccus and rod-shaped bacteria are the predominant microorganisms found in the small intestine. However, in the distal portion of the small intestine alkaline conditions support gram-negative bacteria of the Enterobacteriaceae. The bacterial flora of the small intestine aid in a wide range of intestinal functions. The bacterial flora provide regulatory signals that enable the development and utility of the gut. Overgrowth of bacteria in the small intestine can lead to intestinal failure. In addition the large intestine contains the largest bacterial ecosystem in the human body. About 99% of the large intestine and feces flora are made up of obligate anaerobes such as Bacteroides and Bifidobacterium.
Bacteria make up most of the flora in the colon and accounts for 60% of fecal nitrogen. This fact makes feces an ideal source of gut flora for any tests and experiments by extracting the nucleic acid from fecal specimens, and bacterial 16S rRNA gene sequences are generated with bacterial primers. This form of testing is also often preferable to more invasive techniques, such as biopsies.
Five phylum dominate the intestinal microbiota: Bacteroidota, Bacillota (Firmicutes), Actinomycetota, Pseudomonadota, and Verrucomicrobiotawith Bacteroidota and Bacillota constituting 90% of the composition. Somewhere between 300 and 1000 different species live in the gut, with most estimates at about 500. However, it is probable that 99% of the bacteria come from about 30 or 40 species, with Faecalibacterium prausnitzii (phylum firmicutes) being the most common species in healthy adults.
Research suggests that the relationship between gut flora and humans is not merely Commensalism (a non-harmful coexistence), but rather is a mutualistic, Symbiosis relationship. Though people can survive with no gut flora, the microorganisms perform a host of useful functions, such as fermenting unused energy substrates, training the immune system via end products of metabolism like propionate and acetate, preventing growth of harmful species, regulating the development of the gut, producing vitamins for the host (such as biotin and vitamin K), and producing hormones to direct the host to store fats. Extensive modification and imbalances of the gut microbiota and its microbiome or gene collection are associated with obesity. However, in certain conditions, some species are thought to be capable of causing disease by causing infection or increasing cancer risk for the host.
Due to the prevalence of fungi in the natural environment, determining which genera and species are permanent members of the gut mycobiome is difficult. Research is underway as to whether Penicillium is a permanent or transient member of the gut flora, obtained from dietary sources such as cheese, though several species in the genus are known to survive at temperatures around 37 °C, about the same as the core body temperature. Saccharomyces cerevisiae, brewer's yeast, is known to reach the intestines after being ingested and can be responsible for the condition auto-brewery syndrome in cases where it is overabundant, while Candida albicans is likely a permanent member, and is believed to be acquired at birth through vertical transmission.
As the microbiome composition changes, so does the composition of bacterial proteins produced in the gut. In adult microbiomes, a high prevalence of enzymes involved in fermentation, methanogenesis and the metabolism of arginine, glutamate, aspartate and lysine have been found. In contrast, in infant microbiomes the dominant enzymes are involved in cysteine metabolism and fermentation pathways.
The US population has a high representation of enzymes encoding the degradation of glutamine and enzymes involved in vitamin and lipoic acid biosynthesis; whereas Malawi and Amerindian populations have a high representation of enzymes encoding glutamate synthase and they also have an overrepresentation of α-amylase in their microbiomes. As the US population has a diet richer in fats than Amerindian or Malawian populations which have a corn-rich diet, the diet is probably the main determinant of the gut bacterial composition.
Further studies have indicated a large difference in the composition of microbiota between European and rural African children. The fecal bacteria of children from Florence were compared to that of children from the small rural village of Boulpon in Burkina Faso. The diet of a typical child living in this village is largely lacking in fats and animal proteins and rich in polysaccharides and plant proteins. The fecal bacteria of European children were dominated by Firmicutes and showed a marked reduction in biodiversity, while the fecal bacteria of the Boulpon children was dominated by Bacteroidetes. The increased biodiversity and different composition of the gut microbiome in African populations may aid in the digestion of normally indigestible plant polysaccharides and also may result in a reduced incidence of non-infectious colonic diseases.
On a smaller scale, it has been shown that sharing numerous common environmental exposures in a family is a strong determinant of individual microbiome composition. This effect has no genetic influence and it is consistently observed in culturally different populations.
The human immune system creates that can drive the immune system to produce inflammation in order to protect itself, and that can tamp down the immune response to maintain homeostasis and allow healing after insult or injury. Different bacterial species that appear in gut flora have been shown to be able to drive the immune system to create cytokines selectively; for example Bacteroides fragilis and some Clostridia species appear to drive an anti-inflammatory response, while some segmented filamentous bacteria drive the production of inflammatory cytokines. Gut flora can also regulate the production of antibodies by the immune system. One function of this regulation is to cause B cells to class switch to IgA. In most cases B cells need activation from T helper cells to induce class switching; however, in another pathway, gut flora cause NF-kB signaling by intestinal epithelial cells which results in further signaling molecules being secreted. These signaling molecules interact with B cells to induce class switching to IgA. IgA is an important type of antibody that is used in mucosal environments like the gut. It has been shown that IgA can help diversify the gut community and helps in getting rid of bacteria that cause inflammatory responses. Ultimately, IgA maintains a healthy environment between the host and gut bacteria. These cytokines and antibodies can have effects outside the gut, in the lungs and other tissues.
A 2022 review indicated that various mechanisms are under preliminary research to assess how gut microbes may modulate vaccine immunogenicity, including effects on antigen presentation and cytokine profiles.
Bacteria turn carbohydrates they ferment into short-chain fatty acids by a form of fermentation called saccharolytic fermentation. Products include acetic acid, propionic acid and butyric acid. These materials can be used by host cells, providing a major source of energy and nutrients. Gases (which are involved in signaling and may cause flatulence) and , such as lactic acid, are also produced by fermentation. Acetic acid is used by muscle, propionic acid facilitates liver production of ATP, and butyric acid provides energy to gut cells.
Gut flora also synthesize vitamins like biotin and folate, and facilitate absorption of dietary minerals, including magnesium, calcium, and iron. Methanobrevibacter smithii is unique because it is not a species of bacteria, but rather a member of domain Archaea, and is the most abundant methane-producing archaeal species in the human gastrointestinal microbiota.
Gut microbiota also serve as a source of vitamins K and B12, which are not produced by the body or produced in little amount.
Apart from carbohydrates, gut microbiota can also metabolize other such as drugs, , and food toxicants. More than 30 drugs have been shown to be metabolized by gut microbiota. The microbial metabolism of drugs can sometimes inactivate the drug.
The human gut microbiota plays a crucial role in modulating the effect of the administered drugs on the human. Directly, gut microbiota can synthesize and release a series of enzymes with the capability to metabolize drugs such as microbial biotransformation of L-dopa by decarboxylase and dehydroxylase enzymes. On the contrary, gut microbiota may also alter the metabolism of the drugs by modulating the host drug metabolism. This mechanism can be mediated by microbial metabolites or by modifying host metabolites which in turn change the expression of host metabolizing enzymes.
A large number of studies have demonstrated the metabolism of over 50 drugs by the gut microbiota. For example, lovastatin (a cholesterol-lowering agent) which is a lactone prodrug is partially activated by the human gut microbiota forming active acid hydroxylated metabolites. Conversely, digoxin (a drug used to treat Congestive Heart Failure) is inactivated by a member of the gut microbiota (i.e. Eggerthella lanta). Eggerthella lanta has a cytochrome-encoding operon up-regulated by digoxin and associated with digoxin-inactivation. Gut microbiota can also modulate the efficacy and toxicity of chemotherapeutic agents such as irinotecan. This effect is derived from the microbiome-encoded β-glucuronidase enzymes which recover the active form of the irinotecan causing gastrointestinal toxicity.
One of the most important bacterial metabolites produced by the gut microbiota is secondary bile acids (BAs). These metabolites are produced by the bacterial biotransformation of the primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) into secondary bile acids (BAs) lithocholic acid (LCA) and deoxy cholic acid (DCA) respectively. Primary bile acids which are synthesized by hepatocytes and stored in the gall bladder possess hydrophobic characters. These metabolites are subsequently metabolized by the gut microbiota into secondary metabolites with increased hydrophobicity. Bile salt hydrolases (BSH) which are conserved across gut microbiota phyla such as Bacteroides, Firmicutes, and Actinobacteria responsible for the first step of secondary bile acids metabolism. Secondary bile acids (BAs) such as DCA and LCA have been demonstrated to inhibit both Clostridioides difficile germination and outgrowth.
A 2016 systematic review of preclinical studies and small human trials conducted with certain commercially available strains of probiotic bacteria found that Bifidobacterium and Lactobacillus genera ( B. longum, B. breve, B. infantis, L. helveticus, L. rhamnosus, L. plantarum, and L. casei), were of interest for certain central nervous system disorders.
Changing the numbers and species of gut microbiota can reduce the body's ability to ferment carbohydrates and metabolize bile acids and may cause diarrhea. Carbohydrates that are not broken down may absorb too much water and cause runny stools, or lack of SCFAs produced by gut microbiota could cause diarrhea.
A reduction in levels of native bacterial species also disrupts their ability to inhibit the growth of harmful species such as C. difficile and Salmonella Kedougou, and these species can get out of hand, though their overgrowth may be incidental and not be the true cause of diarrhea. Emerging treatment protocols for C. difficile infections involve fecal microbiota transplantation of donor feces (see Fecal transplant). Initial reports of treatment describe success rates of 90%, with few side effects. Efficacy is speculated to result from restoring bacterial balances of bacteroides and firmicutes classes of bacteria.
The composition of the gut microbiome also changes in severe illnesses, due not only to antibiotic use but also to such factors as ischemia of the gut, failure to eat, and immune compromise. Negative effects from this have led to interest in selective digestive tract decontamination, a treatment to kill only pathogenic bacteria and allow the re-establishment of healthy ones.
Antibiotics alter the population of the microbiota in the gastrointestinal tract, and this may change the intra-community metabolic interactions, modify caloric intake by using carbohydrates, and globally affect host metabolic, hormonal, and immune homeostasis.
There is reasonable evidence that taking probiotics containing Lactobacillus species may help prevent antibiotic-associated diarrhea and that taking probiotics with Saccharomyces (e.g., Saccharomyces boulardii ) may help to prevent Clostridioides difficile infection following systemic antibiotic treatment.
With regard to gut microbiota, prebiotics are typically non-digestible, dietary fiber compounds that pass undigested through the upper part of the gastrointestinal tract and stimulate the growth or activity of advantageous gut flora by acting as substrate for them.
Synbiotics refers to or dietary supplements combining probiotics and prebiotics in a form of Synergy.
The term "pharmabiotics" is used in various ways, to mean: pharmaceutical formulations (standardized manufacturing that can obtain regulatory approval as a drug) of probiotics, prebiotics, or synbiotics; probiotics that have been genetically engineered or otherwise optimized for best performance (shelf life, survival in the digestive tract, etc.); and the natural products of gut flora metabolism (vitamins, etc.).
There is some evidence that treatment with some probiotic strains of bacteria may be effective in treatment of irritable bowel syndrome, inflammatory bowel disease, and Bloating. Those organisms most likely to result in a decrease of symptoms have included:
The diversity of gut flora appears to be significantly diminished in people with inflammatory bowel diseases compared to healthy people; additionally, in people with ulcerative colitis, Proteobacteria and Actinobacteria appear to dominate; in people with Crohn's, Enterococcus faecium and several Proteobacteria appear to be over-represented.
There is reasonable evidence that correcting gut flora imbalances by taking probiotics with Lactobacilli and Bifidobacteria can reduce visceral pain and gut inflammation in IBD.
Additionally, the liver plays a dominant role in blood glucose homeostasis by maintaining a balance between the uptake and storage of glucose through the metabolic pathways of glycogenesis and gluconeogenesis. Intestinal lipids regulate glucose homeostasis involving a gut–brain–liver axis. The direct administration of lipids into the upper intestine increases the long chain fatty acyl-coenzyme A (LCFA-CoA) levels in the upper intestines and suppresses glucose production even under subdiaphragmatic vagotomy or gut vagal deafferentation. This interrupts the neural connection between the brain and the gut and blocks the upper intestinal lipids' ability to inhibit glucose production. The gut–brain–liver axis and gut microbiota composition can regulate the glucose homeostasis in the liver and provide potential therapeutic methods to treat obesity and diabetes.
Just as gut flora can function in a feedback loop that can drive the development of obesity, there is evidence that restricting intake of calories (i.e., dieting) can drive changes to the composition of the gut flora.
In addition to humans and vertebrates, some insects also have complex and diverse gut microbiota that play key nutritional roles. Microbial communities associated with can constitute a majority of the weight of the individuals and perform important roles in the digestion of lignocellulose and nitrogen fixation. It is known that the disruption of gut microbiota of termites using agents like antibiotics or boric acid (a common agent used in preventative treatment) causes severe damage to digestive function and leads to the rise of opportunistic pathogens. These communities are host-specific, and closely related insect species share comparable similarities in gut microbiota composition. In , gut microbiota have been shown to assemble in a deterministic fashion, irrespective of the inoculation; the reason for this host-specific assembly remains unclear. Bacterial communities associated with insects like termites and cockroaches are determined by a combination of forces, primarily diet, but there is some indication that host phylogeny may also be playing a role in the selection of lineages.
For more than 51 years it has been known that the administration of low doses of antibacterial agents promotes the growth of farm animals to increase weight gain.
In a study carried out on mice the ratio of Firmicutes and Lachnospiraceae was significantly elevated in animals treated with subtherapeutic doses of different antibiotics. By analyzing the caloric content of faeces and the concentration of small chain fatty acids (SCFAs) in the GI tract, it was concluded that the changes in the composition of microbiota lead to an increased capacity to extract calories from otherwise indigestible constituents, and to an increased production of SCFAs. These findings provide evidence that antibiotics perturb not only the composition of the GI microbiome but also its metabolic capabilities, specifically with respect to SCFAs.
Classifications
Enterotype
Composition
Bacteria
Stomach
Intestines
Bacteria commonly found in the human colon Bacteroides fragilis 100 Bacteroides melaninogenicus 100 Bacteroides oralis 100 Enterococcus faecalis 100 Escherichia coli 100 Enterobacter sp. 40–80 Klebsiella sp. 40–80 Bifidobacterium bifidum 30–70 Staphylococcus aureus 30–50 Lactobacillus 20–60 Clostridium perfringens 25–35 Proteus mirabilis 5–55 Clostridium tetani 1–35 Clostridium septicum 5–25 Pseudomonas aeruginosa 3–11 Salmonella enterica 3–7 Faecalibacterium prausnitzii ?common Peptostreptococcus sp. ?common Peptococcus sp. ?common
Fungi
Viruses
Variation
Age
Geography
Malnourishment
Race and ethnicity
Socioeconomic status
Antibiotic use
/ref> The study also states that there are many experts on intestinal health concerned that antibody usage has reduced the diversity of the gut microbiota, many of the strains are lost, and if there is a re-emergence of the bacteria, is gradual and long-term.
Functions
Direct inhibition of pathogens
Development of enteric protection and immune system
Metabolism
Cellulose degradation
Pharmacomicrobiomics
Contribution to drug metabolism
Secondary metabolites
Dysbiosis
Gut–brain axis
Alterations in microbiota balance
Effects of antibiotic use
Pregnancy
Probiotics, prebiotics, synbiotics, and pharmabiotics
Research
Role in disease
Ulcers
Bowel perforation
Inflammatory bowel diseases
Irritable bowel syndrome
Asthma
Diabetes mellitus type 1
Obesity and metabolic syndrome
Other animals
See also
Notes
Further reading
|
|